Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457265

RESUMO

Small RNAs (sRNAs) are essential regulators in the adaptation of bacteria to environmental changes and act by binding targeted mRNAs through base complementarity. Approximately 550 distinct families of sRNAs have been identified since their initial characterization in the 1980s, accelerated by the emergence of RNA-sequencing. Small RNAs are found in a wide range of bacterial phyla, but they are more prominent in highly researched model organisms compared to the rest of the sequenced bacteria. Indeed, Escherichia coli and Salmonella enterica contain the highest number of sRNAs, with 98 and 118, respectively, with Enterobacteriaceae encoding 145 distinct sRNAs, while other bacteria families have only seven sRNAs on average. Although the past years brought major advances in research on sRNAs, we have perhaps only scratched the surface, even more so considering RNA annotations trail behind gene annotations. A distinctive trend can be observed for genes, whereby their number increases with genome size, but this is not observable for RNAs, although they would be expected to follow the same trend. In this perspective, we aimed at establishing a more accurate representation of the occurrence of sRNAs in bacteria, emphasizing the potential for novel sRNA discoveries.


Assuntos
Pequeno RNA não Traduzido , Salmonella enterica , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Análise de Sequência de RNA
2.
Methods Mol Biol ; 2167: 91-111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32712917

RESUMO

Pseudoknots are important motifs for stabilizing the structure of functional RNAs. As an example, pseudoknotted hammerhead ribozymes are highly active compared to minimal ribozymes. The design of new RNA sequences that retain the function of a model RNA structure includes taking in account pseudoknots presence in the structure, which is usually a challenge for bioinformatics tools. Our method includes using "Enzymer," a software for designing RNA sequences with desired secondary structures that may include pseudoknots. Enzymer implements an efficient stochastic search and optimization algorithm to sample RNA sequences from low ensemble defect mutational landscape of an initial design template to generate an RNA sequence that is predicted to fold into the desired target structure.


Assuntos
Biologia Computacional/métodos , Desenho Assistido por Computador , Conformação de Ácido Nucleico , RNA Catalítico/química , RNA Catalítico/genética , Biologia Sintética/métodos , Algoritmos , Sequência de Bases , Eletroforese em Gel de Ágar , Eletroforese em Gel de Poliacrilamida , Técnicas In Vitro , Cinética , Motivos de Nucleotídeos/genética , Reação em Cadeia da Polimerase/métodos , RNA/genética , Dobramento de RNA/genética , RNA Catalítico/metabolismo , Software , Transcrição Gênica
3.
PLoS Comput Biol ; 14(3): e1005992, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29543809

RESUMO

We present a new educational initiative called Meet-U that aims to train students for collaborative work in computational biology and to bridge the gap between education and research. Meet-U mimics the setup of collaborative research projects and takes advantage of the most popular tools for collaborative work and of cloud computing. Students are grouped in teams of 4-5 people and have to realize a project from A to Z that answers a challenging question in biology. Meet-U promotes "coopetition," as the students collaborate within and across the teams and are also in competition with each other to develop the best final product. Meet-U fosters interactions between different actors of education and research through the organization of a meeting day, open to everyone, where the students present their work to a jury of researchers and jury members give research seminars. This very unique combination of education and research is strongly motivating for the students and provides a formidable opportunity for a scientific community to unite and increase its visibility. We report on our experience with Meet-U in two French universities with master's students in bioinformatics and modeling, with protein-protein docking as the subject of the course. Meet-U is easy to implement and can be straightforwardly transferred to other fields and/or universities. All the information and data are available at www.meet-u.org.


Assuntos
Biologia Computacional/educação , Biologia Computacional/métodos , Pesquisa/educação , Humanos , Projetos de Pesquisa , Estudantes , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...